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Light-scattering spectrum in dielectric crystals is studied with extended thermodynamics �ET� for a phonon
gas, covering from hydrodynamic to ballistic �collisionless� regimes. The ET equation is solved to obtain the
power spectrum of the energy density in a phonon-gas mixture, which consists of interacting phonon gases of
longitudinal and transverse acoustic �LA and TA� phonon modes. In the hydrodynamic regime, where phonon
collisions take place frequently, it is found that the light-scattering spectrum consists of two components, which
can be interpreted as the two normal modes formed by the two second-sound modes defined in each of the LA
and TA phonon gases. Out of the two normal-mode spectra, the low-frequency component arises from thermal
fluctuations and gives rise to a narrow quasielastic spectrum, which corresponds to the well-known thermal
Rayleigh scattering due to thermal diffusion, i.e., due to overdamped second sound. With sufficient
momentum-conserving phonon collisions �normal phonon scattering�, the narrow quasielastic component is
demonstrated to develop, from the diffusive central peak, into a pair of shifted inelastic peaks due to propa-
gation of underdamped second sound. The other spectrum component gives rise to a much broader quasielastic
scattering, whose wing extends out to the Brillouin-scattering lines of the LA and TA phonons �first sounds�.
The broader quasielastic spectrum has a linewidth equal to the phonon-collision rate, which suggests that this
component originates from a nonequilibrium process in the phonon gas. As the ballistic regime is approached,
the line shapes and linewidths of the two normal-mode spectra approach each other, and the two components
finally coincide in the limit of the ballistic regime, which is in good agreement with the reported behavior for
these spectra that were experimentally observed in many crystals. In the ballistic limit, the light-scattering
mechanism in the present model is found to become formally equivalent to the previously proposed micro-
scopic framework, i.e., the second-order difference Raman scattering �two-phonon difference light scattering�
on a same phonon dispersion. The derived spectral formula is fitted to the spectra previously observed in the
experiments for rutile �TiO2� and strontium titanate �SrTiO3�. The fits are quite successful in wide ranges of
frequency and temperature, i.e., regardless of degree of nonequilibrium, owing to the ET analysis. The relax-
ation times for the normal and resistive phonon collisions ��N and �R� are determined through the analysis. The
temperature dependences of �N and �R indicate that the origin of the broad shifted peaks �the “broad doublet”�,
which were observed in SrTiO3 at around 30 K, is likely due to underdamped second sound at least in a narrow
temperature range around 30 K.
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I. INTRODUCTION

Transport phenomenon is a fundamental nonequilibrium
aspect in many-body systems, where thermal equilibrium is
realized through the interactions among constituent particles
such as molecules, electrons, phonons, etc. One of the most
important transport phenomena is the energy transport in di-
electric solids, where the energy �or “heat”� is carried only
by phonons at a velocity of sound speed. Studying the energy
transport in dielectric solids brings us understandings of the
mechanism of thermal diffusion, wavelike propagation of
heat �“second sound”�, ballistic heat conduction.1–3 In dielec-
tric solids, the conduction of heat is realized through the
lattice anharmonicity, which allows for collisions between
phonons in a “phonon gas.2,4”

In early version of nonequilibrium physics that deals with
dissipation including diffusion phenomena, it was essential
to assume that thermal equilibrium is always achieved lo-
cally in a “small cell” of the relevant system.5,6 Owing to this
local-thermal-equilibrium hypothesis, local thermodynamic
variables, such as local temperature, local entropy, etc., may
be defined in the length scale of the small cells, and it is
possible that the entire system is not necessarily in thermal

equilibrium as a whole. For local thermal equilibrium to be
achieved in the small cells, the mean free path of the energy
quanta �such as molecules, phonons, electrons, etc.� in the
cells must be sufficiently shorter than the dimension of the
small cells; otherwise, we see the nonequilibrium kinetic be-
havior inside the individual cells. If the mean free path of the
quanta is comparable to the observation length scale, the
memory effect of successive collisions between the energy
quanta should not be neglected. Since the mean free path of
phonons in most dielectric solids can range from nm to �m
or even to mm scales as the temperature is reduced, we can-
not always assume local thermal equilibrium within a fixed
length scale. Therefore, it is possible that local thermal equi-
librium is violated due to temperature change. If local ther-
mal equilibrium is violated, we must consider the correlation
between the phonon collisions: such process involves fre-
quency and wave-vector dependences of the transport coef-
ficients such as thermal conductivity or diffusivity.

We have recently reported on light-scattering experiments
in crystals of rutile, ZnSe, silicon, and SrTiO3.7 We found
that, at relatively high temperatures, the low-frequency part
of the light-scattering spectra consisted of two quasielastic
components. Out of the two quasielastic components, the
narrower component broadened on cooling, and it had a line-
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width that could be well reproduced as Dthq
2 at high tem-

peratures, where Dth is the thermal diffusivity and q is the
wave-vector transfer in the experiments. However, the ob-
served linewidth of the narrower quasielastic component did
not follow Dthq

2 at low temperatures, showing that the ob-
servation length scale of q−1, which was �100 nm, was too
short compared to the mean free path of phonons,7 which
becomes longer at low temperature because the number of
the thermally excited phonons decreases as the temperature
is lowered. The other quasielastic component, the broader
one, showed opposite temperature dependence for the line-
width, i.e., it narrowed on cooling, and had no q dependence;
therefore, the two quasielastic components approached each
other on cooling. However, we could not quantitatively ana-
lyze such a behavior in the low-temperature region due to the
lack of theories that cover the whole temperature range. In
SrTiO3, it has been reported by Hehlen et al.8 that an extra
soundlike peak appears in the Brillouin-scattering spectrum
around 30 K, and they tentatively ascribed the extra Brillouin
peak to the second sound, the wavelike propagation of heat,2

basing on a theoretical work by Gurevich and Tagantsev.9 We
found that the extra Brillouin spectrum was seemingly devel-
oped from the thermal-diffusive �the narrow� quasielastic
component. Since thermal diffusion is considered as over-
damped second sound,10–12 the spectrum of second sound
should transform gradually from a quasielastic profile into a
pair of shifted peaks as the thermal wave becomes under-
damped. However, in order to deal with all of the above
aspects of the low-frequency light-scattering spectra �thermal
diffusion, second sound, nonequilibrium heat transport, the
broader quasielastic component, etc.�, it is essential to for-
mulate the nonequilibrium light-scattering theory that can be
applied not only when local thermal equilibrium can be as-
sumed but also when it cannot be established.

Recently, a method of nonequilibrium thermodynamics
has been developed,5 and it has succeeded in reproducing the
pressure dependence of the light-scattering spectrum in
rarefied gases. Also, thermal diffusion, propagation of second
sound, and ballistic phonon propagation in NaF �Ref. 13� has
been well simulated from relatively simple formalism with
phonon-gas model.5,6,14 Although the theoretical framework
that is called “extended thermodynamics �ET�” seems to be
still under test, it is becoming a powerful tool for the analysis
of experimental data that concerns highly nonequilibrium
processes.5,6

In this paper, we solve a set of ET equations for a phonon-
gas system to obtain the formula for the light-scattering spec-
tra that is applicable from equilibrium to nonequilibrium re-
gimes in dielectrics. In Sec. II, the derivation of the spectral
formula is presented. The narrow central peak due to thermal
diffusion �thermal Rayleigh mode�, the broad Brillouin dou-
blet due to second sound, and the broad central peak �Moun-
tain mode in crystals� are discussed in that section. Also, we
discuss how the nonequilibrium energy-transport affects
those “equilibrated” spectra when the nonequilibrium is ap-
proached. In Sec. III, we fit the derived expression to the
experimentally observed spectra for rutile and SrTiO3 crys-
tals. The possibility of second sound in these systems is dis-
cussed in Sec. IV, and it is concluded that the reported broad
doublet in SrTiO3 �Ref. 8� is likely due to second sound.
Finally, we summarize this report in Sec. V.

II. THEORY

A. Extended thermodynamic equations for a mixture of
phonon gases

In order to realistically characterize the phonon gas in a
dielectric, we consider the anharmonic interactions between
different phonon modes, namely, longitudinal and transverse
acoustic �LA and TA� modes, rather than considering only a
single phonon mode. Following the treatments in the review
by Dreyer and Struchtrup,5,14 who have carried out ET analy-
ses on boson gases, the ET equations to be solved is given as
follows for one-dimensional case:14
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Here, the traceless symmetric parts of a tensor of rank n,
Ti1¯in

, are denoted by T�i1¯in�, and further abbreviation such
as T�i1¯in��T�n� is used.5,14 The moments of the phase den-
sity �distribution function� f are defined by the equation14

u�n� � u�i1¯in� = �� � c

k
�n−1

k�i1� ¯ k�in�fdk .

For n=0,1 ,2 , . . ., we obtain e���=c2u�0�
���, p���=ux

���=u�1�
���,

N�xx�
��� =u�2�

��� , . . ., and u�n�
���=u�xx¯xn�

��� , which are, respectively, the
energy density, the momentum density, the momentum flux
�the traceless symmetric part of the stress tensor�, …, and the
general flux deviator of order n.5,6,14 ���= �l� or �t� denotes
the phonon mode LA or TA, respectively. c��� is the sound
velocity, and �R

��� and �N
��� are the relaxation times for the

resistive �R� and normal �N� processes of phonon-phonon
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scattering, respectively. Note that the R process include the
Umklapp and other nonmomentum-conserving collisions be-
tween phonons, while the N process does not destroy mo-
mentum conservation. �n is defined by

�n �
�n − 1�2

4�n − 1�2 − 1
. �3�

The coupling constants responsible for the exchanges of en-
ergy and momentum between the two sound modes are de-
fined, respectively, by

A =
1

�R
�t�c�t�

3 + 2�R
�l�c�l�

3 +
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5 . �5�

The set of Eqs. �1a� and �2c� consists of 2n equations, i.e., n
balance equations for the “fields” for each of the modes.
Each equation is obtained from the Boltzmann equation mul-
tiplied by u�n� and then integrated over the whole Brillouin
zone, combined with Callaway’s relaxation-time
approximation,15 which assumes two relaxation times, �N
and �R. Equation �1a�, the first balance equation for the LA
mode, is a continuity equation for the energy density with a
production term �the right-hand side� due to the interaction
with the other modes �two TA modes�. The total energy e
=e�l�+2e�t� is conserved, but there is an exchange of energy
between the modes unless c�l�

3 e�l�−c�t�
3 e�t�=0 holds. Due to N

processes, there is an exchange of momentum between the
modes unless c�l�

5 px
�l�−c�t�

5 px
�t�=0.

In this ET model, we consider all the phonons in the
whole Brillouin zone, i.e., not only the long-wavelength
phonons but also those with much shorter wavelength �much
larger wave vectors�.14 It should be pointed out that the pho-
non lifetime is shorter for phonons with larger wave vectors.
Therefore, phonon collisions within one branch as well as
those between different branches can be considered in this
model. The intramode phonon collision is expected to occur
far less frequently in crystals16 if one neglects the life time of
thermal phonons �i.e., in the ballistic regime�, but, in general,
one should include not only the intermode but also the intra-
mode phonon collisions in order to account for the collective
excitations in a phonon gas. Another remark is that the one-
dimensional model assumes that the phonons traveling in all
the directions can participate in the collisions.

B. Light scattering in phonon gas

Light scattering occurs through the modulation in dielec-
tric constant 	 by the fluctuations in the thermodynamic vari-
ables such as the density or temperature in the medium. In
Landau-Placzek theory,17 the fluctuation in 	 is described by
the following relation:


	 = � �	

��
�

T


� + � �	

�T
�

�


T , �6�

where � and T are the density and temperature, respectively.
In phonon picture, this is expressed equivalently as18,19


	 = p1�q�A�q� + 	
q

p2�q1,q2�A�q1�A�q2� , �7�

where p1 and p2 are the first- and second-order Raman coef-
ficients, respectively, and A is the phonon normal coordinate.
p1 gives �ordinary� one-phonon scattering �first-order Raman
scattering�, and p2 gives second-order Raman scattering,
where number-density fluctuations in the phonon gas is re-
sponsible for the light-scattering mechanism. The power
spectrum, �
	�
	�, calculated from Eq. �6� and �7� contains
three types of terms: �i� scattering from a single phonon; �ii�
scattering from a pair of phonons; �iii� the interference be-
tween the contributions of �i� and �ii�. In ordinary fluids, only
the contribution of �i� is usually considered because the sec-
ond contribution is much smaller than the first due to rela-
tively large thermal-expansion effect, which indirectly con-
nects the temperature change to the dielectric constant.17 The
Brillouin scattering from elastic sound wave originates from
the contribution from the p1 term, i.e., it is the first-order
scattering in which a single phonon is relevant.

In contrast to light scattering in ordinary fluids, the
second-order term, �ii�, plays a significant role in solids, and
it gives rise to light scattering directly due to thermal fluc-
tuations, i.e., the dielectric constant is modulated directly
�not via thermal-expansion effect� by the fluctuations in
number density of phonons.18 Since the number density of
phonons is proportional to the energy density 
e�x , t�� in the
phonon gas, its power spectrum, �e�e�, which we will calcu-
late from the ET equations, describes only the contribution
from the second term in the right-hand side of Eq. �7�. The
power spectrum, �e�e�, should not include the first-order
scattering because it contains at least four phonon coordi-
nates, and the Brillouin scattering from a sound wave will
not appear in our calculated spectrum, which will be pre-
sented below. Since we have been interested in the quasielas-
tic light scattering in solids, including thermal Rayleigh scat-
tering or other low-energy scattering involving a collection
of phonons, we will focus only on the second-order scatter-
ing, which can be described by the power spectrum of the
energy density in the phonon gas.

C. Frequency- and wave-vector-dependent viscosity
in phonon gas

To clarify the system described by the ET equations of
Eqs. �1� and �2�, we first consider one-branch phonon ET
equation. We formally set the coupling constants to be zero,
viz., A=B=0, in Eqs. �1� and �2�, and the system reduces as
the following:
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where we have dropped the mode suffix. Taking Fourier-
Laplace transform, we obtain
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where s is the Laplace operator, and the contributions from
the higher order moments than p�q ,s�, namely, from
u�2� ,u�3� , . . ., have been renormalized into �3�q ,s�, which is
regarded as a frequency- and wave-vector-dependent viscos-
ity in a phonon gas.6

From Eq. �8�, and taking into account the mutual indepen-
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From Appendix A, it can be shown that the viscosity term,
�3�q ,s�, is defined by a recurrence relation as
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If we write the complex quantity �3�q ,s� �s=i� as

�3�q,s��s=i� = �3� + i�3�, �12�

where �3� and �3� are real quantities, we obtain the scattering
spectrum S�q ,�� as the real part of �e��q ,0�e�q ,s�� �s=i�
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where the natural frequency of the phonon gas has been
introduced as

�0 �
1

�3
cq . �14�

If �R is sufficiently short such that 1 /�R��3�q , t�, then
�3�q , t� can be neglected and the right-hand side of Eq. �13�
can be approximated as a Green function for a usual damped
harmonic wave, whose resonance frequency and damping
rate are given by ��0

2−1 /4�R
2 and 1 /�R, respectively. For

weak damping, therefore, there can be a wave of phonon
density, i.e., wavelike propagation of temperature, which is
known as the “second sound.1,2” Thus, the equation set in
Eqs. �1� and �2� can be viewed as two coupled second
sounds, which are the temperature waves in the LA and TA
phonon gases. Note that the macroscopic quantities such as
“temperature” or “energy density” can be defined only if
1 /�R��0, which ensures local thermal equilibrium within a
time scale of 1 /�0; such regime is referred to as “hydrody-
namic” or “collision dominated.” In contrast, if �R is long
such that �3�q ,s� cannot be neglected, then, effects of
frequency- and wave-vector-dependent viscosity appear as
modifications to the resonance frequency and to the line-
width of the second sound as can be found in Eq. �13�. In the
latter case, local thermal equilibrium within a time scale of
1 /�0 can no more be achieved, and this nonequilibrium re-
gime is referred to as “ballistic” or “collisionless.” These
modifications to the second-sound frequency and linewidth
can be thought as arising from memory effect in the dissipa-
tive processes in phonon gas,6 and in that sense, �3�q ,s� is
referred to as the “memory function.” In the present case, if
� is short enough for �4 ,�5 , . . . to be neglected, we see that
�3�q ,�� describes a Debye-type relaxation. Since the inverse
Laplace transform of �3�q ,s� yields that

�3�q,t� � �3c2q2e−t/�,

we see that the memory function can be approximated as an
exponential function when �4��1. On the other hand,
higher order terms must be incorporated if � is long such that
�m��1, and in general, an infinitely continued fraction must
be considered as the memory function in the ballistic regime.

D. Coupling between two second sounds

In this section, we now consider the coupling between the
two second sounds for the LA and TA phonon gases. From
the discussions described in the Sec. II C, each of Eqs. �1�
and �2� can be viewed as two damped harmonic waves �sec-
ond sounds� with damping due to viscosity. The contribu-
tions to the viscosity from the moments of higher order than
p can be renormalized into �3�q ,s� in the Fourier-Laplace
space. Therefore, instead of considering the whole moment
equations in Eqs. �1� and �2�, we take only Eqs. �1a�, �1b�,
�2a�, and �2b�, replacing 1 /�R

��� with 1 /�R
���+�3

����q ,s�. Now
the equation system in the Fourier-Laplace space becomes
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By eliminating p�l��q ,s� and p�t��q ,s�, we obtain two coupled
wave equations for the second sounds for the LA and TA
phonon gases
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which can be expressed in a matrix form as
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Since the solution for Eqs. �16� and �17� is quite tedious,
it is deferred to Appendix A. Although further simplifications
are to be introduced below, the exact solution can still be
obtained analytically, and its property is essentially the same
as the solution with the simplification that is to be described
below. As we expect for a coupled-oscillator system, the

coupled second sounds described by Eqs. �16� and �17� can
be diagonalized and the oscillations can be decomposed into
two normal modes. The expressions for such normal modes
become quite simple if we introduce an average group ve-
locity and relaxation times for the LA and TA phonon gases
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If we assume a plane-wave solution, we find that the deter-
minant of the characteristic matrix on the left-hand side of
Eq. �18� for the system can be factorized into two simple
quadratics in s

M11M22 − M12M21 = �s2 + � 1

�R
+ �3�q,s��s + �0

2�
� �s2 + �2

�
+ �3�q,s��s

+ ��0
2 +

1

�2 +
1

�
�3�q,s��� .

Setting s→ i�, we obtain the eigenvalues �the normal-mode
frequencies� as

�1 = ���0
2 −

1

4
� 1

�R
+ �3�q,s��2

+
i

2
� 1

�R
+ �3�q,s��

�21�

�2 = ���0
2 −

1

4
�3

2�q,s� + i�1

�
+

1

2
�3�q,s�� . �22�

It is worth noting that, without the approximation made in
Eq. �19�, the determinant of the characteristic matrix is not to
be factorized into such two simple quadratics in s; it is too
complicated to display here. Even in that case, however, the
four eigenvalues can be classified into two types qualita-
tively similar to Eqs. �21� and �22�.

The eigenvector for �=�1 is obtained as e�l� /2e�t�=1,
which indicates that the number densities of the phonons in
the LA and TA phonon gases, i.e., the “component” tempera-
tures, oscillate in phase. Since the “sum” of e�l� and 2e�t� is
the total energy density, e, which is proportional to the tem-
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perature change in the crystal, it is this “in-phase” mode that
is directly detected as the temperature change in heat-pulse
experiments.20–24 If this mode is underdamped, the propaga-
tion of second sound is allowed, as it has been observed by
several authors.20–24 On the other hand, the eigenvector for
�=�2 is obtained as e�l� /2e�t�=−1, which indicates that the
number densities of phonon in the LA and TA gases oscillate
180 out of phase. This “out-of-phase” mode is not observed
as a wave �i.e., second sound� because Eq. �22� indicates that
its damping is always faster than its frequency; this aspect
will be proved in the later sections. It should be noted that, in
experiments, only one second-sound mode can be observed
although two second sounds are considered in the present
model. This is because we cannot separately measure the
component temperatures in the LA and TA phonon gases, but
we can measure the “total” temperature, which corresponds
to one of the two normal modes �i.e., the “in-phase” mode�
formed by the two second-sound waves. Indeed, Dreyer and
Struchtrup have shown14 that two undamped second sounds25

of speeds c�l� /�3 and c�t� /�3 give one second sound if the
equation system is solved for the total energy density. The
speed of such a second sound is given by14

VII =�1

3

�5

�3
,

where �n
−1� 1

3 �1 /c�l�
n +2 /c�t�

n �. This velocity of second sound
was also reported by Sussman and Thellung26 and Beck and
Beck.27

These two normal modes are similar to those in a me-
chanical two coupled oscillators,28 which can be decomposed
into the “in-phase” and “out-of-phase” modes, where the two
weights move in the same and opposite directions, respec-
tively 
see Fig. 1�a��. The “in-phase” mode does not affect
the coupling spring �and/or dash pot� between the two

weights if the two oscillators have the same mass and spring
constant. In the “out-of-phase” mode, however, the length of
the coupling spring �and/or dash pot� between the two
weights changes significantly, resulting in the modification to
the resonance frequency and/or to the damping rate. Without
assuming Eq. �19�, the two normal modes are not completely
independent, but their properties are essentially similar to
those mentioned above.

In the present system of “two coupled second sounds,” the
amplitudes of the two oscillations are the local temperatures
in the LA and TA phonon gases 
see Fig. 1�b��. Therefore, if
we assume the approximation as in Eq. �19�, there is no
dissipation from one temperature wave to the other in the
“in-phase” mode �Mode1�, because there is no temperature
gradient between the two temperature waves; one of the two
waves does not drag the other wave. Thus, in the “in-phase”
normal mode, the viscous coupling between the second
sounds for the LA and TA phonon gases is inactive when we
assume the approximation as in Eq. �19�, and is very weak
even in general cases. On the other hand, in the “out-of-
phase” normal-mode �Mode2�, the local temperature changes
in the two second sounds have opposite signs 
see Fig. 1�b��,
and hence, there is a temperature gradient between the two
waves. Thus, one of the two waves strongly drags the other
wave via the viscosity of the medium phonon gas.

If Eq. �19� is assumed, the spectra for the in-phase mode
�Mode 1� and out-of-phase mode �Mode 2� are obtained,
respectively, as

S1�q,s� =
1

s +

1

3
c2q2

s +
1

�R
+ �3�q,s�

, �23�

and

S2�q,s� =
1

s +
1

�
+

1

3
c2q2

s +
1

�
+ �3�q,s�

. �24�

S1�q ,s� is identical with the right-hand side of Eq. �9�, which
is the spectrum for an independent �noninteracting� second
sound: its properties have been described in Sec. II C.
S2�q ,s�, on the other hand, includes the interaction between
the two second-sound waves for the LA and TA phonon
gases.

Since S2 vanishes if there is no coupling between the two
second sounds, S2 can be interpreted as arising from energy
and momentum dissipation from one second-sound mode to
the other via the viscous coupling between the modes. Thus,
the spectrum S2 due to such a process may be interpreted as
the “Mountain mode,” which was first introduced by Moun-
tain in the analysis of the light-scattering spectra in molecu-
lar fluids with internal degrees of freedom weakly coupled to
the density fluctuations �sound wave� via frequency-
dependent viscosity.29 In our system, the second-sound

FIG. 1. Two coupled �a� mechanical oscillators and �b� second
sounds �temperature waves�. In both figures, Mode 1 and 2 are the
“in-phase” and “out-of-phase” normal modes, respectively. In �b�,

T and e represent the temperature fluctuation and the energy-
density fluctuation, respectively. Note that the interaction between
the two oscillators is much more effective in Mode 2 than in Mode
1.
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modes of LA and TA phonon gases are coupled, and one
mode can behave as a dissipative counterpart for the other
mode; they are just like the sound wave and the internal
motions of molecules in a fluid. More detailed discussions
are to be given in Sec. II G 4.

E. Phonon regime and Knudsen number

For systematic analyses, we set situations that are sepa-
rated according to the magnitudes of the ratio of mean free
path of phonons to the characteristic length scale. Such a
ratio is referred to as the “Knudsen number” in the field of
hydrodynamics. Since the characteristic length scale is the
reciprocal of q �the magnitude of the wave-vector transfer� in
scattering experiments, the Knudsen number in a phonon gas
can be defined as

Kn � ql = qc� ,

where l is the mean free path of phonons

l = c� .

In the phonon system we are concerned with, we have as-
sumed two relaxation times, namely, �N and �R. Thus, we
have to consider the phonon Knudsen numbers for both the
normal and resistive processes, which we write as KnN and
KnR

KnN = qc�N, �25�

KnR = qc�R. �26�

The overall Knudsen number is, then, given by

Kn = �KnR
−1 + KnN

−1�−1 = qc� .

When KnN�1 or KnR�1, the situation is referred to as
“hydrodynamic regime” because we can assume local ther-
mal equilibrium within a length scale of q−1. In the hydrody-
namic regime, we can observe thermal diffusion, or thermal
wave �“second sound”�. When KnN�1 and KnR�1, the
situation is referred to as “collisionless” or “ballistic” re-
gime, where we cannot utilize macroscopic descriptions be-
cause macroscopic quantities such as temperature or entropy
cannot be defined locally; in this case, we do not observe
macroscopic phenomena such as diffusion or propagation of
“temperature” or “entropy.” Other general situations are cat-
egorized as “intermediate regime.” Figure 2 shows how the
phonon regimes are defined according to combinations of the
phonon Knudsen numbers KnN and KnR.

In the hydrodynamic regime, i.e., when Kn is much
smaller than unity, the ET-equation set in Eq. �1� reduce to a
classical thermodynamic equation such as the heat diffusion
equation or the heat wave equation for second sound. Such
thermodynamic equations can be obtained even if we set �3
to be zero, which means that we neglect the moments higher
than the momentum density. Therefore, the contributions of
the higher order moments are considered to be silent if Kn
�1. The higher order moments �or the viscosity term �3�
begin to play significant roles when the nonequilibrium de-
gree is increased such that Kn�1.

F. Asymptotic expression for the spectrum

The continued-fraction expansion is advantageous in that
we can approximate the spectrum with asymptotic forms of
the component fractions in Eq. �10�, viz., limn→� �n�q ,s�,
assuming equal relaxation times for a mode.6 In that case,
one has only to provide a continued fraction to a certain
order �n�30 has been turned out to be sufficient�, then to
terminate it with an asymptotic form obtained from the
relation6

���q,s� =
1

�s + 1/�� + ��c2q2���q,s�
,

which gives

���q,s� =
2

c2q2 
− �s + 1/�� + ��s + 1/��2 + c2q2� , �27�

where we note that ��=limn→� �n=1 /4. By terminating the
continued fractions in Eq. �10� with the asymptotic form at
sufficiently deep level, namely, at nmax=31,5,14 where nmax is
the highest order of moment, Eqs. �23� and �24� can be ap-
plied continuously from thermal equilibrium even to far non-
equilibrium regime because �3�q ,s� so terminated includes
effectively infinite orders of moments.

For S2�q ,s�, we can express the right-hand side of Eq.
�24� in a more compact form if we infinitely expand the
continued fraction in �3�q ,s� �see Appendix B�

Im
S2�q,s��s=i�� =
1

2cq
�ln
�� + cq�2�2 + 1�

− ln
�� − cq�2�2 + 1�� , �28�

Re
S2�q,s��s=i�� =
1

2cq

tan−1�� + cq�� − tan−1�� − cq��� .

�29�

The scattering spectrum is given from Eq. �29�; the right-
hand side is a difference of two arctangent functions. The
right-hand side of Eq. �28� is a difference of two logarithmic

� �

� � �

�

�

FIG. 2. Phonon regimes and phonon Knudsen numbers. KnR

and KnN are defined in Eqs. �25� and �26�, respectively. The hatched
region corresponds to the “second-sound regime,” where a wavelike
propagation of heat is expected to exist in solids.
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functions, and Eqs. �28� and �29� are related by the Kramers-
Kronig relation. Since the expressions in Eqs. �28� and �29�
contain the infinite hierarchy of the frequency- and wave-
vector-dependent viscosity, we may use Eqs. �28� and �29� as
a response function of Mode 2 for any combination of KnN
and KnR.

The spectral function of the lowest order with the
asymptotic expressions of Eq. �27� corresponds to that in the
case that nmax=2 and �3�q ,s�=���q ,s�=2
�c2q2+ �s+1 /��2

− �s+1 /���. In that case, �3��q ,�� and �3��q ,�� in Eq. �12� are
given, respectively, by

�3��q,�� =
8

15
�z� −

1

�
�, �3��q,�� =

8

15
�z� − �� , �30�

where z� and z� are defined as in z=�c2q2+ �i�+1 /��2=z�
+ iz�, with

z� = Re
�c2q2 + �i� + 1/��2� =
1

�2
���c2q2 − �2 +

1

�2
�2

+
4�2

�2

+ �c2q2 − �2 +
1

�2
� ,

z� = Im
�c2q2 + �i� + 1/��2�

= sign��� �
1

�2
���c2q2 − �2 +

1

�2�2

+
4�2

�2
− �c2q2 − �2 +

1

�2� .

If we expand the continued fraction �3�q ,s� further, i.e., if
nmax=3 and �4�q ,s�=���q ,s�, then �3� and �3� are given as
follows:

�3��q,�� =
4

15
c2q2 �

35

17

1/� +
18

17
z�

�� +
18

17
z��2

+ �1/� +
18

17
z��2 ,

�31�

�3��q,�� = −
4

15
c2q2 �

35

17

� +
18

17
z�

�� +
18

17
z��2

+ �1/� +
18

17
z��2 .

�32�

Note that �3�q ,�� as given above can be approximated as a
Debye-type relaxational mode �a central Lorentzian� if hy-
drodynamic regime �cq��1� is assumed

�3�q,�� �
�

1 + i��
�nmax = 3,�4 = ��� .

G. Hydrodynamic regime

1. Second sound

If KnR�1 or KnN�1, one can show from Eq. �30� that,
for nmax=2 and �3=��,30

�3��q,�� →
4

15
c2q2�, and �3��q,�� → 0,

which give

S1�q,�� �
2�0

2�ss

��2 − �0
2�2 + 4�2�ss

2 , �33�

where we have defined

�ss �
2

5
�0

2�N +
1

2�R
=

2

15
c2q2�N +

1

2�R
. �34�

S1�q ,�� in Eq. �33� is the spectrum for a damped harmonic
oscillator �DHO�, and is essentially identical with that ob-
tained earlier by other authors10,18,31,32 except the differences
in the numerical factors in �ss. �0 defined in Eq. �14� is the
natural frequency of the phonon gas, and it corresponds to
the frequency of an undamped “thermal wave.” �ss defined
in Eq. �34� is the damping rate of the thermal wave. Note
that �ss depends not only on �R but also on �N, c, and q, and
it has opposite dependences on �N and on �R, i.e., the shorter
�N ��R� gives the smaller �larger� �ss.

If �ss��0 holds, the thermal wave is underdamped and a
resonance occurs at a frequency

�ss = ��0
2 − �ss

2 �35�

��0�1 −
2

5

�N

�R
� , �36�

which is the frequency of “second sound,” and this resonance
effect is referred to as the “second-sound resonance.” Rather
than the familiar diffusive transport of heat energy, the sec-
ond sound is a wavelike propagation of heat at a finite propa-
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gation speed vss�c /�3, In order to have such an equili-
brated thermal wave as a well-defined collective excitation
of phonons, we need, not only the weak-damping condition
�ss��0, but also the hydrodynamic regime, i.e., KnN�1 or
KnR�1 because there must be sufficient number of thermal
phonons within the relevant scales of space and time. The
simultaneous requirements can be expressed in an inequality
as

�ss � �0 � �N
−1.

From Eq. �34�, this can be alternatively expressed in a
well-known10 form as

�R
−1 � �0 � �N

−1,

which is called the “window condition” for propagation of
second sound in solids. The window condition can be
expressed also as

KnN � 1 � KnR, �37�

which is clearly stating that one simultaneously requires fre-
quent N processes and infrequent R processes within a length
scale of q−1. In Fig. 2, the region labeled as “pure second
sound” corresponds to the condition of Eq. �37�. In this re-
gime, “pure” second sound is expected, and its spectrum
should be a very sharp doublet located at �ss� �cq /�3.

2. Thermal diffusion

If �ss��0, then the second sound is overdamped and can-
not propagate. This is the thermal diffusion effect, which is a
much more common phenomenon in thermal transport in
most materials. In this case, S1�q ,�� is reduced approxi-
mately to a central peak

S1�q,�� �
�th

�2 + �th
2 , �38�

which is the well-known “thermal Rayleigh component”17

with a width proportional to q2 as

�th = Dthq
2. �39�

Dth is the thermal diffusivity in a well-known kinetic expres-
sion as

Dth =
1

3
c2�R. �40�

The width can be alternatively expressed as

�th = �0
2�R.

3. Properties of S2(q ,�) and total spectrum

Setting cq��1 in the right-hand side of Eq. �29�, we see
that

S2�q,�� �
1

2cq
� 2cq�

�

�����
tan−1 �� =

�2

�2 + �2
2 , �41�

where

�2 =
1

�
=

1

�N
+

1

�R
.

Thus, the linewidth of S2�q ,�� corresponds to the mean fre-
quency of the collisions between the phonons. Since � is an
averaged relaxation time over the whole thermal phonons in
the Brillouin zone, � is considered to have no dependence on
frequency and wave vector of thermal phonons.14 Thus, �
should be independent of q. The width �2 is much broader
than �0 and than �th because we are assuming the hydrody-
namic regime �cq�N�1 or cq�R�1�. Thus, the thermal-
DHO spectrum, S1�q ,��, should be superposed on this much
broader unshifted Lorentzian of S2�q ,�� as

Stotal�q,�� = P1
2�0

2�ss

��2 − �0
2�2 + 4�2�ss

2 + P2
�2

�2 + �2
2 , �42�

where P1 and P2 are the weighting coefficients for S1�q ,��
and S2�q ,��, respectively.

In thermal diffusion regime, the resistive process is domi-
nant, and �2 is effectively equal to 1 /�R. Thus, we have a
useful relation between �th and �2 as

�th�2 �
1

3
c2q2 = �0

2, �43�

i.e., the product of the linewidths of thermal Rayleigh and
Mountain modes is almost temperature independent at high
temperatures. Equation �43� also states that

��1�2 =
1

�3
, �44�

where �1=�th /cq and �2=�2 /cq are the linewidths normal-
ized by the average Brillouin shift.

4. Interpretation of the spectral components
in the hydrodynamic regime

It is important to note that the thermal relaxation �thermal
diffusion� and the fast relaxation �collisions between
phonons� should never be discussed separately. Rather, we
see that the two spectra, S1�q ,�� and S2�q ,��, reflect two
limiting aspects in a medium: the slow relaxation corre-
sponds to the fluctuations just in the vicinity of local thermal
equilibrium, whereas the fast one to the kinetic processes,
i.e., the collisions, which are the nonequilibrium processes
essential for thermal equilibrium to be locally established.
Therefore, we see the “duality” of a phonon gas; we see both
equilibrium and nonequilibrium processes simultaneously in
Eq. �42�. It should also be emphasized that such a spectral
structure of the dual fluctuation can be observed only if the
characteristic length �or time� scale in the scattering experi-
ment lies between the two length scales for thermal diffusion
and interparticle collision, i.e., a relation,

l � q−1 � c/�Dthq
2� �45�

is required for the two spectra to be clearly resolved. There-
fore, the selection of a length scale q−1 is critical in studying
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the nonequilibrium phonon dynamics in crystals, and we see
that light-scattering experiments can offer a good value since
10�q−1�100 nm. Note that the mean free path of phonons
can range from �1 to �1000 nm according to the tempera-
ture, indicating that temperature change can break the in-
equality 
Eq. �45��. Since an average Brillouin frequency
�̄B=qc can be regarded as a characteristic frequency in light
scattering in a phonon gas,7 Eq. �45� can be written in the
frequency domain as

Dthq
2 � �̄B � �̄−1,

which states that the Brillouin line should appear in the
middle frequency range between the two central peaks of S1
and S2.

Similar discussions should be able to apply to any scat-
tering experiments for any gas model. In such general cases,
Dth should be replaced with a generalized diffusivity for con-
stituent particles or excitations. In fact, superionic conduc-
tors exhibited similar double quasielastic spectrum in light-33

and neutron-34 scattering experiments and the narrow and
broad linewidths were tentatively attributed to the ion diffu-
sion rate and the mean hopping rate of the conducting ions,
respectively. This is very similar in nature to the present case
as was hinted long ago.35

H. Ballistic regime (collisionless regime)

If both N and R processes become infrequent such that
KnN,KnR�1, the approximate expression of Eq. �42� in the
hydrodynamic regime is not valid, and effects of higher order
moments set in. If we retain the approximation defined in Eq.
�19�, S1 and S2 are given, respectively, from Eqs. �13� and
�29� as

S1�q,�� =

�0
2� 1

�R
+ �3��

��0
2 − �2 − ��3��

2 + �2� 1

�R
+ �3��2 ,

S2�q,�� =
1

2cq

tan−1�� + cq�� − tan−1�� − cq��� ,

where �3��q ,�� and �3��q ,�� are the real and imaginary parts
of �3�q ,s� �s=i� defined in Eq. �10�, respectively. As the bal-
listic regime is approached, the widths of S1 and S2 approach
each other as shown in Fig. 3, where the Normal process of
phonon collision is ignored by setting �N��R. For small val-
ues of �R, the spectra of S1 and S2 correspond to the thermal-
diffusion mode and the Mountain mode, respectively, and
both spectra are well approximated as Lorentzians, as we
have described in Sec. II G. As �R becomes longer, the nar-
row quasielastic component, S1, broadens whereas the broad
component S2 narrows. However, the two widths of S1 and
S2 converges to cq, which is the averaged Brillouin fre-
quency �̄B. In fact, in the extreme limit of the ballistic re-
gime, we can set �→�, and we see, from Eqs. �23� and �24�
that S1�q ,�� and S2�q ,�� coincide with each other

S1�q,�� = S2�q,�� =
�0

2�3��q,��

�0

2 − �2 − �3��q,����2 + �2�3�
2�q,��

.

�46�

The convergence of S1 and S2 is shown in Fig. 3 for KnR
=100 although the line shape of S1 is slightly distorted due to
a crude approximation, in which we set �4→�� in tracing
the spectra of S1.

The rectangular line shape in the ballistic limit can be
checked qualitatively as the following. If we replace the con-
tinued fraction �3�q ,s� with ���q ,s� in Eq. �30�, we get

�3��q,�� →
8

15
cq�c2q2 − �2, �3��q,�� → −

8

15
� .

Substituting the above expressions of �3��q ,�� and �3��q ,��
into the right-hand side of Eq. �46� yields a spectrum of the
form

S1�q,�� = S2�q,�� =
24�0

2�c2q2 − �2

− �4 −
6

5
�0

2�2 + 15�0
4

���� � cq� .

�47�

The numerator and denominator of the right-hand side of Eq.
�47� are an ellipse and a convex quartic curve, respectively.
Since the latter is close to an ellipse in shape, the spectral
shape is almost flat for −cq���cq, and it has vertical walls
at �= �cq.

If we do not employ the asymptotic form ���q ,s� and cut
the continued fraction at n=nmax, i.e., if we set �nmax+1=0,
the spectrum in the highly ballistic regime exhibits nmax
sharp peaks5,36 as we show in Fig. 4, where nmax and KnR are
varied �KnN→� is assumed for simplicity�. In general, it can
be shown that these peaks are located at ��i�
=cq cos �nmax

�i�, and their heights are h�i��sin �nmax
�i�,

where �nmax
�i�= i� / �nmax+1�, and i is an integer �for detailed

discussions, see Appendix B�. The spectral formula in the
ballistic limit is, then, given in the form

Sbal��,q ,� � 	
i=1

nmax

sin �nmax
�i�

1/�2


� − cq cos �nmax
�i��2 + 1/�2 ,

�48�

where Lorentzian line shape is introduced, and a common
linewidth, 1 /�, has been introduced for all the peaks. The
behavior of the spectra in the ballistic limit, i.e., KnR
=1000 shown in Fig. 4 can be fully reproduced by Eq. �48�.

The comblike peak distribution seen in Fig. 4 is appar-
ently due to the lack of number of moments. In fact, in Fig.
4, the spectrum for nmax=30 and KnR=100 is comblike
whereas that for nmax=300 and KnR=100 is rectangular in
shape. To include infinite number of higher order moments,
we only have to replace the summation in Eq. �48� with an
integral, and we obtain the spectrum with infinite number of
moments �nmax→��
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Sbal��,q� � �
0

�

sin �
1/�2

�� − cq cos ��2 + 1/�2d� . �49�

The right-hand side can be analytically integrated to give

Sbal��,q� � tan−1�� + cq�� − tan−1�� − cq�� , �50�

which is identical with the right-hand side of Eq. �29�. Set-
ting �→� in Eq. �50�, we actually obtain a rectangular func-
tion

lim
�→�

Sbal�q,�� = �
1 ���� � cq�
1

2
�� = � cq�

0 ���� � cq�
� = rect� �

2cq
� .

The light scattering in the ballistic regime can be viewed
also as arising from elastic scattering from individual
phonons traveling in all directions. Similar effect is observed
in rarefied gasses, in which the individual molecules elasti-
cally scatter the incident radiation as “moving mirrors” with
the velocity components following the Maxwell-Boltzmann
velocity distribution, giving rise to a Doppler-broadened
elastic spectrum, i.e., a central Gaussian spectrum.5,37 In gen-
eral, the spectrum obtained from individual scatterers in the
low-density limit is given by5

S�q,�� � Re�� f̃�c�
s − ic · q + 1/�

dc�
s=i�

,

where f̃�c� is the velocity distribution for the scatterers; for

ideal �massive� gasses f̃�c��e−mc2/2kBT �Maxwell-Boltzmann
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distribution�, and for an isotropic phonon gas

f̃�c� =
1

2
sin �, �� = cos−1c · q

cq
� .

Thus, the scattering spectrum from individual phonons in an
isotropic phonon gas is given as

S�q,�� � Re��
0

� sin �

s − iqc cos � + 1/�
d��

s=i�

= tan−1�� + cq�� − tan−1�� − cq�� ,

which is identical with Eq. �50�, and it becomes flat
�−cq���cq� as �→�.

If elastic anisotropy of a crystal is taken into account, then
the limiting spectrum can exhibit some structure as reported
by Farhi et al.38,39 in their analysis based on two-phonon
difference light scattering in KTaO3. They found that dou-
bletlike spectrum can appear if q is in a direction where there
is local minimum for the sound velocity.

I. Two-phonon difference light scattering

It must be pointed out that Eqs. �48�–�50� can also be
viewed as a light-scattering spectrum from pairs of phonons
on a same phonon-dispersion branch: these phonons are si-
multaneously created and annihilated.18,38–42 Such a scatter-
ing mechanism is referred to as two-phonon difference scat-
tering �TPDS�. The TPDS is a consequence of the second-
order Raman effect, in which a pair of elementary excitations
participates;37 this effect arises from the second term in the
right-hand side of Eq. �7�.

The TPDS is the lowest order approximation for describ-

ing the interaction of photon �light� with phonons �not with a
single phonon as in the first-order Raman scattering�. In the
TPDS, one of the two phonons is created while the other is
simultaneously annihilated: the energy and momentum con-
servation is fulfilled among the two participating phonons
and light. Let the incident light have a frequency and wave
vector as ��inc ,kinc�, and the scattered light ��scat ,kscat�. The
energy and momentum conservation in a two-phonon differ-
ence process is expressed as

� = �scat − �inc = �i�k2� − � j�k1� ,

q = kscat − kinc = k2 − k1, �51�

where �i�k� is the frequency of a phonon in mode i, and k1
and k2 are the wave vectors of the relevant phonons. Note
that q�k1 ,k2 and that ���1 ,�2 in light-scattering experi-
ments. The TPDS from different phonon modes, i.e, the case
in which i� j, requires that two different phonon modes be
degenerated at points in the Brillouin zone. Since such points
are usually located at the zone boundaries, it is not expected
that TPDS from different phonon modes is dominant at low
temperatures. Hence, in the ballistic regime, where there are
few phonons excited, the phonons participating in the TPDS
should belong to the same branch, viz., i= j. Thus, the TPDS
should be “intramode” in the ballistic regime.43

Assuming an isotropic phonon dispersion, and letting the
angle between q and k2 be �, a single TPDS yields42 a fre-
quency shift of ����=cq cos �. If the two phonons have
lifetimes, the spectrum from a single-scattering process may
be regarded as a Lorentzian with a “pair width”44 of 1 /�.38

Thus, summing up all the contributions from the phonon
pairs in the Brillouin zone, we have45

STPDS��,q� � �
0

�

sin �
1/�2

�� − cq cos ��2 + 1/�2d�

= tan−1�� + cq�� − tan−1�� − cq�� . �52�

This is identical with the spectrum in the ballistic limit pre-
sented in Eqs. �49� and �50� if we identify � with �. There-
fore, the comblike spectrum in the ballistic limit in Fig. 4
may be viewed also as a collection of scattering spectra due
to two-phonon difference processes. The form of TPDS as in
Eq. �52� was also reported in Ref. 39 with more rigorous
discussions.

Although we assumed the ballistic regime so far, let us
investigate the spectrum of Eq. �52� in the hydrodynamic
regime. As we have shown in Eq. �41�, the differential arct-
angent spectrum as in the right-hand side of Eq. �52� can be
approximated as a Lorentzian with a width of �2=�−1. Since
two-phonon approximation is not possible in the hydrody-
namic regime in a strict sense, we must consider that higher
order interactions between the participating phonon pairs are
effectively renormalized in the pair width. Such renormaliza-
tion may be characterized as a ladder-type diagram for the
self-energy in the Green function technique,18,19,32,46 in
which “first sound,” “second sound �including thermal diffu-
sion�,” and “nonthermodynamic dielectric fluctuations” have
been introduced. Among such contributions in the self-
energy, the present TPDS corresponds to the “nonequilib-
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rium” contribution, which can alternatively be interpreted as
the “Mountain mode” in crystals in Klein’s terminology.19

Summarizing this section, we have seen that STPDS is al-
ways coincides with S2 regardless of the phonon regime.
Therefore, S2 may be regarded as arising from light scatter-
ing from two-phonon difference processes on the same pho-
non dispersion, and we may always write S2�q ,�� as

S2�q,�� =
1

2�cq

tan−1�� + cq�� − tan−1�� − cq��� ,

�53�

where a normalizing factor has been introduced such that the
integrated intensity is equal to 1. S2�q ,�� in this “differential
arctangent” form can cover spectrum shapes continuously
from the broad central Lorentzian in the hydrodynamic re-
gime to the rectangular spectrum in the ballistic regime.

J. Summary of spectral variation

To summarize theory section, we present, in Fig. 5, a
chart of the light-scattering spectra calculated for a phonon
gas, covering possible major combinations of �KnR,KnN�.
Here, we still retain the approximation as in Eq. �19� for
simplicity. Even without the approximation, the properties of
the calculated spectra are essentially the same except that
each linewidth of S1 and S2 slightly differs from that in the
approximated case. We have set nmax=5 and �6�q ,s�
=���q ,s�, which turned out to be sufficient for the present
demonstration. Note that all the graphs are on doubly loga-
rithmic scales. Figure 2 may be helpful to check the corre-
spondence between the phonon regimes and the phonon
Knudsen numbers.

In the hydrodynamic regime �KnN�1 or KnR�1�, there
is always a broad quasielastic component at the bottom of
the spectral structure: this component is S2�q ,��. On the top

of S2 spectra, there are either narrower quasielastic compo-
nent due to thermal diffusion or inelastic peaks due to
second-sound resonance; both of these are S1’s. The coexist-
ence of S1 and S2 indicates the duality of a relaxation pro-
cesses in a phonon gas. The origin of S2 can be interpreted as
the followings �1� the nonequilibrium counterpart of fluctua-
tions �relaxation processes� in a phonon gas, �2� the Moun-
tain mode due to frequency-dependent viscosity in a crystal,
or �3� two-phonon difference light scattering on the same
phonon dispersion, each of which statements is physically
equivalent to one another.

The left column of the Fig. 5 corresponds to the diffusion
limit, for which KnR�1, i.e., the R process is dominant, and
the spectrum consists of two unshifted Lorentzians. The line-
widths for the narrow and broad quasielastic components are
�1=Dthq

2= 1
3c2q2�R and �2=�−1=�R

−1+�N
−1, respectively.

The lower right regions in Fig. 5, i.e., �KnR,KnN�
= �100,0.1�, corresponds to the “pure” second-sound regime
because of Eq. �37�, and a very sharp peak due to second-
sound resonance is found. However, it should be pointed out
that the resonance peaks due to second sound are found in a
wider range in Fig. 5, viz., KnN�1�KnR. This means that
the window condition for the observation of the second-
sound peak in light-scattering experiments may be rather tol-
erant.

The upper right region in Fig. 5, i.e., the region
KnR,KnN�1, corresponds to the ballistic limit. As the bal-
listic limit is approached, S1 and S2 approach each other, and
in the limit of �→�, both spectra converge into a rectangular
shape with a cut-off frequency at �=cq= �̄B. For a finite
value of �, the rectangular spectrum has a weak Lorentzian
tail. It is interesting to point out that a broad, shifted-peak
structure still exists for �KnR,KnN�= �100,10� as we show in
Fig. 6. This broad shifted peak is not due to thermalized
second sound, but due to an unequilibrated modulation of
number density of phonons. The scattering mechanism in
this ballistic regime is better stated as TPDS rather than light
scattering by collective excitation of phonons such as ther-
mal diffusion or second sound. TPDS can give rise to a
shifted-peak structure as that shown in Fig. 6 also when the
group velocity of phonons has directional dependence, i.e.,
when there is elastic anisotropy, as reported by Farhi et
al.38,47 for the low-temperature light-scattering spectrum ob-
served in KTaO3. We note that the directional dependence of

�
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�
�
�
�
�
�
�
�
�
�
�
	

�
�

FIG. 5. �Color online� A chart of light-scattering spectra from a
phonon gas for combinations of �KnR,KnN�. All the spectra are
plotted on log-log scales. We set nmax=5 and �6=�� in calculating
these spectra.

FIG. 6. Shifted-peak structure in the collisionless regime
�KnR,KnN�= �100,10�. Both axes are on linear scales.
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the pair width can also affect the line shape in the ballistic
regime; in fact, the shifted-peak structure that is shown in
Fig. 6 appears due to the frequency dependence of the line-
widths of the “comb teeth” �those shown in Fig. 4� although
an isotropic phonon dispersion is assumed.

III. COMPARISON WITH EXPERIMENTAL RESULTS

Quasielastic light-scattering spectra due to phonon-gas
fluctuations have been reported in many crystals.7,40,42,48,49 In
this section, we analyze the experimental spectra with the
formula given in Sec. II F. In most of the following part, we
use the approximated spectral function as follows:

S�q,�� = P1S1�q,�� + P2S2�q,�� , �54�

with

S1�q,�� =
2cq

�

�0
2
�3��q,�� + 1/�R�


�0
2 − �2 − ��3��q,���2 + �2
�3��q,�� + 1/�R�2 ,

�55�

S2�q,�� =
1

�

tan−1�� + cq�� − tan−1�� − cq��� , �56�

where �3��q ,�� and �3��q ,�� are defined in Eqs. �31� and
�32�, respectively. The approximation defined in Eq. �19� has
been also employed. The integrated intensities of S1 and S2
are given by 2cqP1 and 2cqP2, respectively, so that its ratio
is given by P1 / P2. Although P1 / P2 is expected to be con-
stant for a simple phonon-gas model, it will turn out to be
strongly temperature dependent in practical systems. Equa-
tion �54� should be able to reproduce spectra in any phonon
regime from hydrodynamic to ballistic regimes.

In the observed spectra, which will be shown later in this
section, sharp Brillouin peaks due to the first-order light scat-
tering from LA and TA acoustic phonons are present. How-
ever, it should be noted that, as we mentioned in Sec. II B,

the spectral expressions derived from the ET equations es-
sentially describes the second-order light scattering, for
which the second terms on the right-hand sides of Eqs. �6�
and �7� are responsible. Therefore, our spectral formula is
not expected to contain those first-order contributions �Bril-
louin scattering� which arise from the first terms on the right-
hand sides of Eqs. �6� and �7�.

We have recently reported the KnR dependence of the
normalized linewidths of the two quasielastic components
measured in several crystals7 as reproduced in Fig. 7�a�. We
can now simulate the KnR dependence of the normalized
widths of S1 and S2, viz., �1 /cq and �2 /cq. The result is
shown in Fig. 7�b�: good agreement between the �a� obser-
vation and �b� theory has been found. For sufficiently small
values of KnR, �1 /cq and �2 /cq are proportional to KnR and
KnR

−1, respectively, indicating that �1 is proportional to q2

and that �2 is independent of q in the hydrodynamic regime.
Here note that �1 is exactly equal to �th, the half width of the
diffusive central peak, in the hydrodynamic regime. For
small KnR, we also see in Figs. 7�a� and 7�b� that Eq. �43�
and �44� are reasonably satisfied. For sufficiently large val-
ues of KnR, both �1 /cq and �2 /cq are independent of KnR,
indicating that both �1 and �2 are proportional to q in the
ballistic limit.

In the following sections, we present fits of the obtained
theoretical formula to the spectra observed in crystals of
rutile �TiO2� �Refs. 7 and 42� and strontium titanate
�SrTiO3�.7,50

A. Rutile (TiO2)

In rutile, we observed temperature dependences of the
quasielastic light scattering �QELS� consisting of two
components.7,42 Figure 8 shows the temperature dependence
of the spectrum observed in rutile on doubly logarithmic
scales.

At high temperatures, the double-Lorentzian structure as
that simulated and shown in Fig. 5 is clearly seen. The nar-
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row QELS shows a q2 dependence for the linewidth whereas
the broad QELS shows no dependence on q for the
linewidth.40,42 As the temperature decreases, the narrower
quasielastic component broadens and the broader one nar-
rows; the two QELS’s have opposite temperature depen-
dences for their linewidths. This double-Lorentzian spectrum
is completely consistent with the simulated spectra shown in
Fig. 5, and we see that the temperature range T�300 K
corresponds to the diffusion limit, viz., KnR�1.

At around 77 K, the linewidths of the two quasielastic
components are so close as it appears that there is only one
quasielastic component. Below �50 K, the temperature de-

pendence of the linewidth becomes weaker. Note that the
constant background appearing in the low-temperature spec-
tra is largely due to the dark counts of the photomultiplier
tube employed in the experiment. In rutile, the quasielastic
component does not develop into an inelastic doublet as that
observed in SrTiO3 �Refs. 8 and 50� as we will describe in
the Sec. III B.

In fitting the spectra in rutile, we adjusted P1, P2, c, �R,
and a constant background. At low temperatures, namely, T
�51 K, the fit result was better if we fix �R to the value
estimated from known Dth, viz., �R=3Dth /vD

2 , where vD is
the Debye’s average sound velocity. Also, at such low tem-
peratures, a �N of �6�10−11 s was helpful to reproduce the
spectral shape although we could not determine �N by setting
it as an adjustable parameter. The solid lines in Fig. 8 are fits
of Eq. �54�. The fits were quite successful in a wide range of
temperature from 21 to 600 K, regardless of the simplifica-
tion that employs an average sound velocity c and an average
collision interval � for LA and TA modes.

The parameters obtained by fit in rutile are listed in Table
I. The spectra at relatively high temperatures were well fitted
by setting all of P1, P2, c, and �R as adjustable parameters.
For such high-temperature data, we did not determine �N
because the fit was not sensitive to �N. It is seen that c ranges
from 1500 to 3200 m/s, which is slower than the Debye
velocity of vD�6000 m /s in rutile. This small average ve-
locity seems to be due to the use of the common c and � for
different phonon modes, i.e., for LA and TA modes. In fact,
the spectra can also be well fitted if we distinguish c�l� and
c�t�, and ��l� and ��t�, where c�l� and c�t� were measured di-
rectly from the Brillouin frequency in the scattered spectra.
The integrated intensities of S1 and S2 are also listed in Table
I. The results are similar to those we reported previously.42

Note that the intensity ratio P1 / P2 is very small at high tem-
peratures, and it increases on cooling, indicating that the vis-
cosity in the phonon gas �the contributions to P2� is larger at
high temperatures and it decreases with decreasing tempera-
ture.

We estimated the thermal diffusivity from the relation,
Dth= 1

3c2�R, and compared it with the values calculated from
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FIG. 8. �Color online� Temperature dependence of the quasielas-
tic light-scattering spectrum observed in rutile �q � 
110��. “LA” and
“TA” denote longitudinal and transverse acoustic Brillouin lines,
respectively. The inset shows the spectra at high temperatures
�q � 
001��. The solid lines are the fit of Eq. �54�.

TABLE I. Parameters obtained by fitting in rutile. The bracketed values were fixed in fitting.

T
�K�

�R

�s�
�N

�s�
c

�m/s� P1 P2

600 3.6�10−13 2800 1.21 124

500 3.5�10−13 3200 1.53 113

400 4.6�10−13 2900 1.70 93.1

298 6.5�10−13 2500 2.54 78.1

297 5.3�10−13 3100 1.85 61.2

200 8.5�10−13 3200 2.38 24.6

150 1.2�10−12 2900 3.88 16.5

101 2.1�10−12 2800 2.44 5.22

77 2.8�10−12 �6�10−11� 2800 1.90 1.99

51 �1.0�10−11� �6�10−11� 1800 1.10 0.928

41 �3.8�10−11� �6�10−11� 2100 0.580 0.351

31 �1.4�10−10� �6�10−11� 1500 0.00938 0.375

21 �1.5�10−9� 4�10−11 2100 0.00 0.108
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the known values of thermal conductivity51 ��� and specific
heat52 �Cp� with the relation Dth=� /�Cp, where � is the mass
density. The values are listed in Table II. Good agreement
was found at relatively high temperatures. Although the
agreement is not so good at relatively low temperatures due
to the small c, the deviations were approximately one order,
which seems to be reasonable for the present simplification
of the model.

B. SrTiO3

SrTiO3 is well known as a kind of perovskite-type crys-
tals. Many of other perovskite-type crystals such as BaTiO3
is known to undergo displacive-type ferroelectric phase tran-
sition when they are cooled down to their Curie temperature
because of freezing of an optical phonon mode �“soft mode”�
that corresponds to the polarizable displacement of the
ions.53 Although SrTiO3 does have such a soft optical pho-
non mode, the relatively large quantum fluctuation is thought
to disturb the freezing of the soft mode in SrTiO3,54 forcing
it to stay in paraelectric phase, and hence, SrTiO3 is referred
to as a “quantum paraelectric.55” In SrTiO3, an anomalous
Brillouin doublet was reported by Hehlen et al.,8 and they
proposed that the origin of the new Brillouin doublet was the
second sound according to the theoretical prediction by
Gurevich and Tagantsev.9 In addition, the molecular dynam-
ics studies published earlier by Schneider and Stoll11,12 had
clearly indicated the existence of second sound in a model of
displacive-type ferroelectric with an optical phonon mode
that softens in the Brillouin-zone center. We have observed
that the thermal-Rayleigh central peak changed into the new
Brillouin spectrum on cooling,7 and pointed out the possibil-
ity of the existence of the second sound in SrTiO3, support-
ing the proposal made by Hehlen et al. More recently, we
have reported an ET analysis of the spectra in SrTiO3,50,56

and we have shown that the overdamped thermal wave �ther-

mal diffusion� is actually underdamped in a narrow tempera-
ture range around 30 K. Figure 9 shows the temperature
variation in the low-frequency light-scattering spectrum in
SrTiO3. Although we have employed a more rigorous, but
complicated form for the spectral expression 
Eq. �3� in Ref.
50�, we have confirmed that fitting Eq. �54� for all the inves-
tigated temperatures give almost the same results as the
analysis we reported in Ref. 50.

Figure 10 shows the temperature dependences of the ob-
tained �N, �ss, and �ss.

50 The expressions for �ss and �ss in

TABLE II. Temperature dependence of the thermal diffusivity
�Dth� in rutile. Dth

�lit�’s were calculated from the literature values of
thermal conductivity ��� and specific heat �Cp� with the relation
Dth=� /�Cp. For the values for T=51, 41, 31, and 21 K, �R was
estimated from Dth

�lit�.

T
�K�

Dth
�lit�

�m2 /s�

1
3c2�R

�m2 /s�

600 1.1�10−6 9.4�10−7

500 1.4�10−6 1.2�10−6

400 1.8�10−6 1.3�10−6

300 2.6�10−6 1.7�10−6

200 4.3�10−6 2.9�10−6

150 7.0�10−6 3.4�10−6

101 1.7�10−5 5.5�10−6

77 3.4�10−5 7.3�10−6

51 1.3�10−4 1.1�10−5

41 3.8�10−4 5.6�10−5

31 1.7�10−3 1.1�10−4

21 2.0�10−2 2.2�10−3
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FIG. 9. �Color online� Temperature dependence of the low-
frequency light-scattering spectra in SrTiO3 from 6 to 295 K �log-
log plot�. The LA and TA denotes longitudinal and transverse
acoustic phonons’ Brillouin lines, respectively. The inset is a semi-
log plot for the spectra below 72 K. Each spectrum is appropriately
scaled for visual clarity. The solid lines are fits of Eq. �54�.
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FIG. 10. �Color online� Temperate dependences of the normal
��N

−1� and the resistive ��R
−1� phonon relaxation rates in SrTiO3. Leg-

ends are shown in the figure. All the lines between the symbols are
guides to the eyes. The dashed horizontal line at �2�1011 rad /s
represents a constant qvD /�3��0. The shaded area indicates the
“window” for second-sound propagation.
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terms of �N, �R are defined in Eqs. �34� and �36�, respec-
tively. The values of �R were measured in a separate work7

except for the value at 6.4 K, which could not be determined
from the employed experimental condition in the work; �R
for 6.4 K was estimated from literature values of � and Cp
with Eq. �40�. The shaded area in Fig. 10 is the “open win-
dow” for second-sound propagation, where �R

−1��N
−1. If the

second-sound frequency, �ss, enters into that area, then un-
derdamped second sound is expected to propagate. Indeed,
the obtained �ss lies in the shaded area in the temperature
range approximately between 20 and 30 K as can be seen in
Fig. 10.

At higher temperatures than �30 K, the second sound is
overdamped because �ss��R

−1, resulting in the quasielastic
scattering observed for T�40 K. At much higher tempera-
tures, the damping is strong enough to regard the over-
damped thermal wave as “diffusion of heat,” and the spec-
trum consists of a narrow thermal Rayleigh mode and the
broad Mountain mode. Indeed, as can be seen in Fig. 10, the
estimated Dth and fitted �R well reproduce the reported val-
ues of Dth and �R, respectively. This double QELS structure
is equivalent to what was observed in rutile at high tempera-
tures, as shown in the Sec. III A. At lower temperatures than
�15 K, the second sound cannot be defined any more be-
cause �N

−1��ss, i.e., there are too few phonon collisions dur-
ing a period of the second-sound oscillation. Even in such a
case, however, light-scattering spectrum can exhibit inelastic
peaks as we have shown in Fig. 5. Therefore, we should
consider that scattering mechanism for the inelastic peaks
observed at 6.4 K in SrTiO3 is TPDS on the same phonon
branch38 rather than second sound.

We can review how the phonon regime changed in SrTiO3
according to the temperature by plotting the phonon Knud-
sen numbers in the �KnR,KnN� plane. Figure 11 shows the
temperature dependence of the point �KnR,KnN�. It is seen
that SrTiO3 under the investigated condition �q=6.0
�107 1 /m� actually goes out of the thermal-diffusion re-
gime at around 50 K, then, enters into the second-sound
regime around 30 K, and finally goes out to the ballistic
regime at the lowest temperature.

IV. DISCUSSIONS

In the previous section, we confirmed that the two-
component QELS �double QELS� arises from the over-

damped thermal waves �the narrow QELS� and their interac-
tion phenomenon �the broad component�. In SrTiO3, the
thermal wave was found to be underdamped below 40 K, and
the narrower QELS changed into a broad-doublet spectrum.
Our analysis showed that �ss was in the narrow “second-
sound window,” and the broad doublet in SrTiO3 could be
attributed to the second sound in the hydrodynamic regime.

The physical origin of the broad doublet in SrTiO3 has
been a long standing controversy.8,55,57–59 Hehlen et al. were
the first to report the extra Brillouin doublet in SrTiO3, and
they tentatively proposed that the new doublet was due to the
second sound according to the theory of Gurevich and
Tagantsev.9 However, Scott et al.59 have published a number
of negative reports and they argued that the new doublet
should be arising from the light scattering from two-phonon
difference processes on two optical phonon branches that
accidentally degenerate at �37 K. Scott et al. claimed that
the light-scattering intensity for the second sound �entropy
fluctuations� should be much weaker than predicted although
they did not show a quantitative discussion on this aspect.
However, our observation and analysis have revealed that the
previously reported7,40 narrow QELS due to thermal diffu-
sion �entropy fluctuations� survives even at a temperature as
low as 50 K. Furthermore, at even lower temperatures, the
narrow QELS gradually changes its shape into a shifted dou-
blet with smooth changes in the line-shape-determining pa-
rameters, namely, �R, �N, and �ss, as shown in Fig. 10.

We also emphasize that the simultaneous existence of the
broader QELS and the broad doublet is also a sign of the
second sound. Our simulation for the spectrum �Fig. 5� indi-
cates that the second-sound doublet should be superposed on
the broader QELS �Mountain mode�, which was actually ob-
served in the experiments.7,8,50,60 The fact that the fitted �N,
c, and the known �R reproduced the entire spectral shape
implies the high reliability of our analysis. In fact, the values
obtained for c ranged from 3600 m/s at 6.4 K to 5900 m/s at
50 K, which are quite reasonable compared with vD
=5400 m /s, where vD is the average sound velocity in the
Debye’s theory. The value of �N can be roughly evaluated
from the Gurevich-Tagantsev relation,9

�U

�N
� 	1/2,

where �U and 	 are the umklapp-scattering time and the di-
electric constant, respectively. Replacing �U with �R, which
is smaller than �U in general, and substituting the known
value for 	 
�103–4 for T�20 K �Ref. 61��, 1 /�N is ex-
pected to be on the order of 1012 rad /s or less for T
�20 K; this does not contradict our result.

Tsujimi and Itoh62 have published another interpretation
for the broad doublet. Their hypothesis is that the broad dou-
blet is arising from the partially softened TA phonon in the
small polar regions, which are thought to exist in SrTiO3.63,64

They have shown that significant doping of cations killed the
broad doublet in SrTiO3, and they argued that the screening
by the doped cations disturbed the development of small
polar regions and that it in turn killed the softened TA
phonons, which could otherwise exist locally in the small
polar region. Since such polar regions contain softened TO
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FIG. 11. Phonon Knudsen numbers measured in SrTiO3 �the
closed squares�. See Figs. 2 and 5 for qualitative comparison.
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phonons of low energy, the normal phonon collisions that are
necessary for the second-sound excitation should also be en-
hanced in such local regions because normal phonons should
have low energy.9 Therefore, the reported disappearance of
the broad doublet in doped samples of SrTiO3 cannot rule
out the second-sound scenario. Tsujimi and co-workers60 fit-
ted a formula consisting of a spectrum for damped harmonic
oscillator and a broad central Lorentzian to the observed
spectra, but the fitted formula employed at least six unknown
parameters, while our analysis had only five; �N, �ss, P1, P2,
and the baseline. Furthermore, the widths for the fitted
damped harmonic oscillator and QELS in their analysis
could be adjusted independently, whereas S1 and S2 in our
ET formula involve common line-shape determining param-
eters, namely, �N and �R, i.e., the two components, S1 and S2,
have mutually dependent linewidths.

In KTaO3, which is thought as a similar system to SrTiO3,
an extra Brillouin doublet very similar to that in SrTiO3 has
also been reported below �15 K.8,38 The origin of the new
doublet in KTaO3 was first proposed to be due to second
sound,8 then later reinvestigated by Farhi et al.,38,65 who
have shown a possibility that such a broad doublet could
arise also from two-phonon difference processes on a single
phonon branch if there is elastic anisotropy. In our analysis
for SrTiO3, the temperature of 6.4 K corresponds to the bal-
listic regime as we showed in Fig. 11. Thus, the scattering
process for the low-temperature doublet should be viewed as
arising from the TPDS on the same phonon branch, rather
than as arising from hydrodynamic second sound, as we
pointed out in Sec. III. The doubletlike line shape is obtained
also in our model if we assume a frequency dependence for
the pair width for an isotropic phonon dispersion: this is
compatible with the analysis by Farhi et al.

In the present theory, the temperature dependence of the
integrated intensities for both S1 and S2 components have not
been given. Also, the observed intensity ratio between the
two components, namely, P1 / P2, was strongly temperature
dependent, which is not predicted in the present theory.
These issues concerning the intensities might be resolved, for
instance, by properly including one-phonon �Brillouin� scat-
tering, whose intensity is connected with the intensity of
S1�q ,�� through the modified Landau-Placzek ratio,18 and it
would also enable reproduction of the interference between
the Brillouin peaks and the broader QELS as seen in Fig. 9
as the asymmetry of the LA Brillouin lines.7,8,42

V. SUMMARY

We calculated light-scattering spectra in a phonon gas
from ET equations of Dreyer and Struchtrup.14 Since the
ET-equation set is applicable not only in hydrodynamic re-
gime but also in collisionless regime, the obtained spectral
formula can be used in any regime, i.e., in a wide range of
temperature and magnitude of q.

The spectral formula consists of two parts, namely, the
thermal-wave term and the interaction term according to the
basing ET-equation set, which can be interpreted as a
coupled wave equation for the second sounds in the LA and
TA phonon gases. Thus, the two spectral components could

be interpreted as arising from the two normal modes in the
coupled wave-equation system. The thermal-wave term
yields either central peak or broad doublet in the scattering
spectrum according to whether the thermal wave is over-
damped or underdamped. The interaction term always yields
a central peak whose linewidth is equal to the rate of colli-
sions between the thermal phonons. Since, in the hydrody-
namic regime, the phonon-collision rate is much higher than
the rate of thermal diffusion and than the frequency of first
sound, the latter quasielastic component has much broader
width than that of the former component or the Brillouin
shift. This broad QELS can alternatively interpreted as the
so-called “Mountain mode” because the spectrum comes
from the interaction between the second sounds via the non-
equilibrium viscosity in the phonon gas.

As the ballistic regime is approached, the two spectral
components develops into the same form, which is a rectan-
gular spectrum in the limit of the ballistic regime. In the
ballistic limit, both spectral components exhibit q-linear de-
pendence for the linewidth, which is in complete contrast to
the q2 and q0 dependences in the hydrodynamic regime for
the narrow and broad QELS’s, respectively. We showed that
the spectrum in the ballistic regime could alternatively be
constructed from the two-phonon difference light-scattering
processes concerning two phonons on the same dispersion
branch, and that the spectral formula obtained from ET and
TPDS coincides with each other in the ballistic limit.

We fitted the spectral formula obtained from ET to the
spectra experimentally observed in rutile and SrTiO3. We
found good agreements between the fitted parameters and the
literature values available. In particular, the temperature de-
pendence of �N in SrTiO3 was determined, and it indicated
the existence of the second-sound excitation in the narrow
temperature range around 30 K.
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APPENDIX A: CONTINUED FRACTION EXPANSION OF
THE SPECTRAL FUNCTION

Here we seek direct solutions of Eqs. �A1� for fluctuation
spectra of e�l� and e�t�, rather than those of normal modes. We
first perform Fourier-Laplace transform for Eqs. �1� and �2�.
The resulting equations can be written in a matrix form as
the following:

M · v = v0, �A1�

where M, v, and v0 have been defined as

M � � L A

A� T
�, v � �vl

vt
�, v0 � �vl0

vt0
� .

Here L, T, A, A�, vl, and vt are block matrices defined as the
followings:
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L ��
s + 2Ac�t�

3 ic�l�q 0 0 ¯

i�2c�l�q s + 1/�R
�l� + 2Bc�t�

5 ic�l�q 0 ¯

0 i�3c�l�q s + 1/��l� ic�l�q ¯

0 0 i�4c�l�q s + 1/��l�
¯

¯ ¯ ¯ ¯ ¯


 ,

T ��
s + Ac�l�

3 ic�l�q 0 0 ¯

i�2c�t�q s + 1/�R
�t� + Bc�t�

5 ic�t�q 0 ¯

0 i�3c�t�q s + 1/��t� ic�t�q ¯

0 0 i�4c�t�q s + 1/��t�
¯

¯ ¯ ¯ ¯ ¯


 ,

A � �
− 2Ac�t�

3 0 0¯

0 − 2Bc�t�
5 0¯

0 0 0¯

¯ ¯ ¯


, A� � �
− Ac�l�

3 0 0¯

0 − Bc�l�
5 0¯

0 0 0¯

¯ ¯ ¯


 ,

vl � 
e�l��q,s�,p�l��q,s�, . . .�T, vt � 
e�t��q,s�,p�t��q,s�, . . .�T,

vl0 � 
e�l��q,0�,p�l��q,0�, . . .�T, vt0 � 
e�t��q,0�,p�t��q,0�, . . .�T,

where the wave vector q must be considered as the wave-
vector transfer in light-scattering experiments, viz., q
= �2�� / �sin�! /2�, where �,  , and ! are the refractive
index, the light wavelength, and the scattering angle, respec-
tively.

1. Uncoupled case (independent gases)

First we consider LA and TA modes without interaction
with the other modes. Setting A=B=0, we obtain a sub-
system of Eq. �A1� as

L · vl = vl0 �A2�

or

T · vt = vt0. �A3�

This system can be regarded as independent or pure pho-
non gases, which do not interact with other modes and no
energy exchange exists. In this case, all we have to do is
solve each of Eqs. �A2� and �A3� separately. Each of the
subsystems is quite similar to that appears in the analysis of
ladder-type electrical circuits.66,67 The present system corre-
sponds to a coupled case of two ladder-type circuits, and the
solutions can be expressed as combinations of the solutions
for the subsystems.

To obtain the spectrum for mode �, we calculate a quan-
tity �e����

�q ,0�e����q ,s��. Thus we may set v0
= 
e����q ,0� ,0 ,0 , . . .� because of the mutual independence of
the variables in each phonon gas.5 It is easily found that in

the independent subsystems Eqs. �A2� and �A3�,

e�l��q,s� = �L−1�11e
�l��q,0� =

det Q�l�

det L
e�l��q,0� �A4�

e�t��q,s� = �T−1�11e
�t��q,0� =

det Q�t�

det T
e�t��q,0� , �A5�

where det m denotes the determinant of a matrix m, and
det Q�l� and det Q�t� are the i= j=1 components of the cut
matrices for submatrices L and T, respectively. Therefore,
Q�l� and Q�t� are obtained by deleting the first row and the
first column from L and T, respectively. The determinants in
Eq. �A4� satisfy the following recursive relations:

det Qi
�l�

det Li
=

Lii det Qi−1
�l� + �ic�l�

2 q2 det Qi−2
�l�

Lii det Li−1 + �ic�l�
2 q2 det Li−2

, �n 
 2� ,

�A6�

where we have written a matrix with i� i components as mi.
We write Eq. �A6� in a matrix form as

�det Qi
�l�

det Li
� = Gi−1� Lii

�ic�l�
2 q2� �A7�
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with Gi−1 � �det Qi−1
�l� det Qi−2

�l�

det Li−1 det Li−2
� . �A8�

This method is known as “Möbius transformation” or linear
fractional transformation. We find that the matrix Gi−1 can be
factorized as

Gi−1 = Gi−2� Li−1,i−1 1

�i−1c�l�
2 q2 0

�
= Gi−3� Li−2,i−2 1

�i−2c�l�
2 q2 0

�� Li−1,i−1 1

�i−1c�l�
2 q2 0

�
= G1H2H3 ¯ Hi−1,

where

Hi � � Lii 1

�ic�l�
2 q2 0

� ,

and

G1 = �det Q1
�l� det Q0

�l�

det L1 det L0
� = � 1 0

L11 1
� .

Hence we see that

�det Qn
�l�

det Ln
� = G1H2H3 ¯ Hn−1� Lnn

�nc�l�
2 q2� .

We note here that the operation of Hi−1 to a vector

Lii ,�ic�l�

2 q2�T, i.e., to a fraction
Lii

�ic�l�
2 q2 , yields a new fraction

of the form

1

�i−1c�l�
2 q2�Li−1,i−1 +

�ic�l�
2 q2

Lii
� �

1

�i−1c�l�
2 q2

1

�i−1
,

where �i has been introduced as

�i �
1

Lii + �i+1c�l�
2 q2�i+1

, �A9�

which is the recursive relation for �i. For an n-moment sys-
tem, �n+1=0 because of the closure theorem.14 Successive
operations of Hi, i.e., "i=2

n−1Hi, yields a continued fraction of
the form

1

�2
= L22 +

�3c�l�
2 q2

L33 +
�4c�l�

2 q2

L44 +
�5c�l�

2 q2

L55 + ¯

.

Since the last operator G1 transforms a fraction
1 / ��2c�l�

2 q2�2� into 1 / �L11+�2c�l�
2 q2�2�=�1, the right-hand

side of Eq. �A7� can be expressed in a continued fraction
form as

det Qn
�l�

det Ln
= �1

�l� =
1

L11 +
�2c�l�

2 q2

L22 +
�3c�l�

2 q2

L33 + ¯

.

A completely analogous discussion can be made for the TA
mode, and we obtain from Eq. �A5� that

det Qn
�t�

det Tn
= �1

�t� =
1

T11 +
�2c�t�

2 q2

T22 +
�3c�t�

2 q2

T33 + ¯

.

Thus, from Eqs. �A4� and �A5�, we obtain spectra in
continued-fraction forms for the pure LA and TA phonon
gases, respectively, as

S�l��q,s� �
�e�l��

�q,0�e�l��q,s��

�e�l��
�q,0�e�l��q,0��

= �1
�l� �A10�

S�t��q,s� �
�e�t��

�q,0�e�t��q,s��

�e�t��
�q,0�e�t��q,0��

= �1
�t�. �A11�

2. Coupled case

Next, we consider the coupling between the modes. Simi-
larly to Eqs. �A2� and �A4�, e�l��q ,s� can be expressed as

e�l��q,s� = �M−1�11e
�l��q,0� =

det �

det M
e�l��q,0� ,

where the matrix � has been defined as follows:

� � �Q�l� a

a� T
� ,

with

a = � 0 A22 0 ¯

0 0 0 ¯

¯ ¯ ¯ ¯


, a� = �
0 0 ¯

A22� 0 ¯

0 0 ¯

¯ ¯ ¯


 ,

where a and a� are obtained by deleting the first row of A
and first column of A�, respectively. The determinants of the
matrices M and � can be calculated as

det � = det Q�l� � det
T − a�Q�l�−1
a�

det M = det L � det
T − A�L−1A� .

Hence, we see that

det �

det M
=

det Q�l�

det L
�

det
T − a�Q�l�−1
a�

det
T − A�L−1A�
= �1

�l� �
det �

det P
,

�A12�

where we have defined that
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� � T − a�Q�l�−1
a, P � T − A�L−1A .

We see in Eq. �A12� in comparison with the noninteracting
spectrum of Eq. �A10� that the interacting spectrum differs
by the factor det � /det P, which includes information of the
interaction between the modes. This modification factor can
be computed by Möbius transformation method similarly to
the earlier part of this section when n
3, and we obtain

�det �n

det Pn
� = ��11�22 + �2c�t�

2 q2 �11

P22P11 − P12P21 P11
�� 1

�3c�t�
2 q2�3

�t�.�
Care should be paid when n�2 noting that

�11 = T11,

�22 = T22 − A22A22� �2
�l�,

P11 = T11 − A11A11� �1
�l�,

P22 = T22 − A22A22� L11�1
�l��2

�l�,

P12 = ic�t�q�1 + A11A22�
c�l�

c�t�
�1

�l��2
�l�� ,

and P21 = ic�t�q�1 + A22A11�
c�l�

c�t�
�1

�l��2
�l�� ,

then we obtain for n
3

det �n

det Pn
=

1 − A22A22� T11�2
�l��1

�t��2
�t�

1 − A11A11� �1
�l��1

�t� − �1
�l��2

�l��1
�t��2

�t�w�l� ,

where w�l� is proportional to B �the coupling constant for the
momentum�, and the explicit expression for w�l� is given
later. Writing down the components of the matrices, we ob-
tain from Eq. �A12� the interacting spectrum for mode ��� in
the Fourier-Laplace space as follows:

S����q,s� �
�e����

�q,0�e����q,s��

�e����
�q,0�e����q,0��

= �1
���

1 − 2B2c���
5 c����

5 �s + a����Ac����
3 ��2

����1
�����2

����

1 − 2A2c���
3 c����

3
�1

����1
���� − 2B�1

����2
����1

�����2
����W���

, �A13�

where

W��� = w���/2B

= c���
5 c����

5 �B
�s + a����Ac����
3 � − 2A2c���

3 c����
3

�1
����

+ A�2q2� c����

c���
+

c���

c����
� + 2A2Bc���

3 c����
3 c���

c����
�1

����2
���� ,

�A14�

with continued fractions defined as the following:

�1
��� =

1

s + a���Ac���
3 + �2c���

2 q2�2
���

=
1

s + a���Ac���
3 +

�2c���
2 q2

s + 1/�R
��� + a���Bc���

5 +
�3c���

2 q2

s + 1/���� + ¯

�2
��� =

1

s + 1/�R
��� + a���Bc���

5 + �3c���
2 q2�3

=
1

s + 1/�R
��� + a���Bc���

5 +
�3c���

2 q2

s + 1/���� +
�4c���

2 q2

s + 1/���� + ¯

�3
��� =

1

s + 1/���� + �4c���
2 q2�4

=
1

s + 1/���� +
�4c���

2 q2

s + 1/���� +
�5c���

2 q2

s + 1/���� + ¯

]

�i
��� =

1

s + 1/���� + �i+1c���
2 q2�i+1

��� �i 
 3� ,

where a�l�=2 and a�t�=1. In Eqs. �A13� and �A14�, �� ,���
= �l , t� or �t , l�.

As a check, letting B be zero, Eq. �A13� reduces to a form
as

S����q,s� �
1/�1

����

�1/�1
�����1/�1

����� − �Ac�����2Ac�����
,

which is a coupled-oscillator spectrum as one employed by
Barker and Hopfield.28

The total spectrum for the considered model is given by
the linear combination of the component spectra, viz.,
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Stotal�q,s� = p1S�l��q,s� + p2S�t��q,s� ,

which was employed in the analysis presented in Ref. 50.
Since each of S�l� and S�t� contains the normal modes corre-
sponding to the second sound and Mountain mode the total
spectrum is still composed of these two normal-mode spectra
�Sl and S2� as those systematically shown in Fig. 5.

APPENDIX B: LINE SHAPE IN THE BALLISTIC LIMIT
(Kn\�)

In the ballistic limit, where Kn→�, we obtain that A
=A�=0. Hence the linear system Eq. �A1� can be reduced to
two independent systems, namely, Eqs. �A2� and �A3�. As
shown in Fig. 4 for Kn#1000, the spectrum in the ballistic
limit becomes a round-shaped comb with N sharp peaks,
where N=nmax is the number of moments in the ET equation.

The peak positions of the comblike spectrum are obtained
by setting the denominator of the spectral function of Eqs.
�A4� and �A5�, namely, det LN or det TN, to be zero. For a
large integer i such that �i�1 /4, these determinants satisfy
the following recursive relations:

det Li = s det Li−1 +
1

4
c�l�

2 q2 det Li−2, �B1�

det Ti = s det Ti−1 +
1

4
c�t�

2 q2 det Ti−2. �B2�

We assume that the frequency shift of the ith tooth out of N
tooth of the comb is located at

�N
����i� = c���q cos �N

����i� , �B3�

where ��� denotes the mode index, �l� or �t�, i is an integer
�i=1,2 , . . . ,N�, and �����i�’s are angles, which are measured
counterclockwise from the horizontal axis. Since �N

����i� is
the ith real root of the dispersion relations in the �� ,q� space,
substituting

s = ic���q cos �N
����i� �B4�

into the recursive relations Eqs. �B1� and �B2� gives that

det LN =
ic�l�

2 q2

4

sin�N + 1��N
�l�

cos �N
�l� ,

det TN =
ic�t�

2 q2

4

sin�N + 1��N
�t�

cos �N
�t� .

Setting these equal to zero �dispersion relation� shows that
the angles �N

��� should satisfy that

�N
����i� = i �

�

N + 1
. �B5�

Equations �B3� and �B5� show that the positions of the comb
teeth coincide with the feet of the perpendicular to the � axis
from N points that are equiangularly located 
$�=� /
�N+1�� on a half circle of radius c���q �see Fig. 12�.

The envelope function for the round-shaped comb spec-
trum can be obtained from the asymptotic expressions for ��l�

and ��t�. Since all the diagonal elements in L and T are equal
to s in this case, we find that

���s� =
2

c2q2 
− s + �s2 + c2q2� = −
2i

cq
ei�N�i�, �B6�

where we have dropped the mode suffix, and we have sub-
stituted the expression of s in Eq. �B4� because the teeth of
the comb are located at �N�i�=cq cos �N�i�. Hence the spec-
tra in �� ,q� space are obtained by taking the real parts of Eq.
�B6� as

�� =
2

cq
sin �N�i� , �B7�

Thus, we see that the spectrum in the ballistic limit has an
elliptic envelope.

From Eqs. �B3� and �B7� for the frequency shifts and the
envelope, respectively, we see that the spectrum in the bal-
listic limit for a finite number of N is a “sine-weighted” and
“cosine-intervaled” comblike spectrum that can be expressed
as

Sbal��,q,N� � 	
i=1

N

sin �N�i�

� − cq cos �N�i�� , �B8�

where the teeth of the comb have been expressed as a sum of
sine-weighted delta functions with cosine-intervaled fre-
quency shifts.

Equation �B8� is considered to be an approximated ex-
pression for the round-shaped, comblike spectra shown in
Fig. 4 for large values of Kn and for a large but finite number
of moments, namely, N=30 or 300 without the asymptotic
expression. We have recently suggested36 that the limiting
spectrum when Kn→� be a half ellipse as Eq. �B8� from
analyses with finite numbers of moments, viz., N�20. But,
it is not true for an infinite number of moments as we will
show below.

Now let us examine the limiting line shape for an infinite
number of moments, viz., when N→�. To do so, we just
replace the sum in Eq. �B8� with an integral after introducing
an appropriate normalizing factor

FIG. 12. �Color online� Determination of the frequency shifts
and the envelope function for the peaks of the round-shaped comb
spectrum when Kn�1. Here N=7 is assumed for visual clarity
although the number is actually too small for the approximation
presented in the text to be valid.
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lim
�,N→�

Sbal�q,�� = cq�
0

�

sin �

� − cq cos ��d�

= cq�
0

�

sin �


�/cq − cos ��

�cq�
d�

= �
0

�

sin �


� − arccos��/cq��
�sin
arccos��/cq���

d�

�B9�

=�
1 ���� � cq�
1

2
�� = � cq�

0 ���� � cq�
� �B10�

=rect� �

2cq
� , �B11�

where the normalizing factor c2q2 /2 has been chosen such
that the height at �=0 is 1. Equation �B11� is a rectangular
function, which is nonzero only for the interval 
−cq ,cq�.

A rectangular function can be regarded as a transfer func-
tion of an ideal low-pass filter as well known in signal pro-
cessing. Since an ideal low-pass filter is expected in an infi-
nite ladder-type electric circuit, and since a formal
correspondence exists between the ET system and a ladder-
type circuit,66,67 the rectangular spectrum obtained here
seems to be quite natural for the linear system of ET with
infinite number of moments.

Instead of assuming a delta function for a tooth of the
comb spectrum in Fig. 12, it may be assumed that the comb
teeth have a finite but very narrow linewidth such that 1 /�
��N�i�, where � is the phonon relaxation time defined in Eq.
�11�. Replacing the delta function in Eq. �B9� with a Lorent-
zian with a width of 1 /�, we obtain a complex susceptibility
as

%�q,�� = Ccq�
0

�

sin �
1

� − cq cos � − i/�
d� , �B12�

where C is a constant. The real and imaginary parts of
%�q ,�� are calculated, respectively, as

Re
%�q,��� = Ccq�
0

�

sin �
� − cq cos �

�� − cq cos ��2 + 1/�2d�

= C�
��−cq�

��+cq� t

t2 + 1
dt

=
C

2
�ln
�� + cq�2�2 + 1� − ln
�� − cq�2�2 + 1��

=
C

2
ln

�� + cq�2 + 1/�2

�� − cq�2 + 1/�2 , �B13�

and

Im
%�q,��� = Ccq�
0

�

sin �
1/�

�� − cq cos ��2 + 1/�2d�

= C�
��−cq�

��+cq� 1

t2 + 1
dt

=
C

2

tan−1�� + cq�� − tan−1�� − cq��� .

�B14�

It is easy to show that, in the ballistic limit �cq�→��, the
right-hand sides of Eqs. �B13� and �B14�, respectively, be-
come the following forms:

Re
%�q,����cq��1 = C ln�� + cq

� − cq
�

Im
%�q,����cq��1 = C rect� �

2cq
� .

Although we have assumed ballistic regime, it is interesting
to investigate the case of hydrodynamic regime. Assuming
that cq��1 in Eqs. �B13� and �B14�, we see that

Re
%�q,����cq��1 = C
�

�2 + 1/�2 ,

Im
%�q,����cq��1 = C
1/�

�2 + 1/�2 ,

which are the real and imaginary parts of a central Lorentz-
ian with a width of 1 /�. Such a central Lorentzian is ex-
pected for S2�q ,�� defined in Eq. �24�. In fact, this is con-
sistent with the result obtained from Eq. �24� if we assume
that cq��1. Therefore, the expression of the right-hand side
of Eq. �B14� can be employed not only in the ballistic regime
but also in the hydrodynamic regime as an expression for
S2�q ,��. Although a slight difference is expected between
the exact form 
Eq. �24�� and the approximate one 
Eq.
�B14�� in the intermediate regime, we may reasonably adopt
the expressions as in the right-hand side of Eq. �B14� as
regime-independent spectral formula for S2�q ,��.
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